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Bubble use evolved in many small invertebrates to enable underwater
respiration, but, until recently, there has been no evidence that vertebrate
animals use bubbles in a similar manner. Only one group of vertebrates,
semi-aquatic Anolis lizards, may be an exception: these lizards dive
underwater when threatened and, while underwater, rebreathe a bubble
of air over their nostrils. Although it seems that rebreathing should be
adaptive, possibly functioning to extend the time that lizards remain
in underwater refugia, this has not been empirically tested. Here, I
demonstrate that rebreathing serves to extend dive time in a semi-aquatic
anole, Anolis aquaticus. I prevented the formation of normal rebreathing
bubbles by applying a commercial emollient on the skin surface where
bubbles form to assess the impact of bubbles on rebreathing cycles,
gular pumps, and dive times. Lizards that were allowed to rebreathe
normally remained underwater an average of 32% longer than those
with impaired rebreathing, suggesting a functional role of rebreathing in
underwater respiration. Unlike rebreathing, gular pumping was unaffected
by treatment and may warrant further research regarding its role in
supplementing underwater respiration. This study provides evidence that
vertebrates can use bubbles to respire underwater and raises questions
about adaptive mechanisms and potential bio-inspired applications.

1. Introduction
Many air-breathing animals have evolved novel uses for air bubbles to
address physiological and ecological challenges when underwater. Although
bubbles are used by air-breathing animals in a range of unusual underwa-
ter applications (e.g. olfaction [1–3], communication [4], thermoregulation
[5], access to mates [6] or long-distance travel [7]), one use of bubbles that
particularly captures attention is the use of bubbles for underwater respira-
tion. Several small invertebrates can attach bubbles of air to their hydropho-
bic body surfaces (e.g. insects [8–11]; scorpions [12]) or their hydrophobic
extended phenotypes (e.g. spiders [13–15]; aphids [16]) when underwater.
These bubbles act as air storage for respiration (e.g. [9,17,18]) and, remarkably,
sometimes as a ‘physical gill’ [19,20] that allows air-breathing arthropods
to obtain O2 and expel CO2 through the bubble’s gas exchange with the
surrounding water (as reviewed by [21,22]).

No air-breathing vertebrate was suspected to use bubbles for underwa-
ter respiration until the recent documentation of rebreathing behaviour in
Neotropical semi-aquatic Anolis lizards [23–26]. Upon diving, a semi-aquatic
anole exhales a bubble of air that clings to the top (figure 1a) or sides
(figure 1b) of its head, sometimes joining with existing air pockets on the
body surface. The bubble is then ‘rebreathed’ at regular intervals during a
dive (electronic supplementary material, video S1); high-speed macro videos
suggest that scale and head morphology helps facilitate the movement of
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air from the body surface to the nostrils (unpublished data), permitting the bubble to appear and disappear around the head
with every respiratory cycle. Semi-aquatic anoles have long hair-like microscopic spinules on the skin trapping air and reducing
wettability [27], allowing air to be retained on the body surface during dives. In addition to rebreathing bubbles while diving,
anoles can also visibly extend, then retract, the hyoid (consisting of thin, mostly cartilaginous rods in the buccal floor) to create
positive pressure to pump air from the gular (throat) region to the lungs, known as ‘gular pumping’ [28].

The function of rebreathing bubbles is unknown but is hypothesized to facilitate longer dives, as bubble air loses PO2 as
anoles rebreathe over time compared to non-rebreathing controls [25]. Although other non-aquatic anole species also have
hydrophobic skin and may produce small bubbles if placed underwater (e.g. [29]), semi-aquatic anoles more consistently use
sustained rebreathing behaviour, rebreathe more often during each dive, and remain underwater longer than do non-aquatic
anoles [25]. Rebreathing behaviour, along with related semi-aquatic morphologies, swimming speed, and skin microstructures,
together suggest that these are semi-aquatic adaptations that have repeatedly evolved in the Anolis genus and demonstrate
convergence [25–27]. Given the observations of semi-aquatic anoles diving underwater when threatened, e.g. [23,30], it follows
that this convergent rebreathing behaviour during dives may allow semi-aquatic anoles to extend time spent in underwater
refugia away from predators. However, this or any other potential fitness-enhancing function of rebreathing bubbles is yet to be
documented.

Using a representative semi-aquatic anole, Anolis aquaticus, I experimentally prevented rebreathing bubbles from being
formed to examine the effect of rebreathing on dive time. A. aquaticus is found in lowland and premontane wet forests in
southwestern Costa Rica and western Panama [31], nearly always in habitats next to small and rocky streams. This small lizard
(up to 71 mm in snout-vent length) is hunted by various birds and snakes [32] and uses both camouflage [33,34] and diving
[23,30] to avoid predators. A. aquaticus consistently rebreathes during dives, which can last at least 16 minutes [23] and likely
longer. Its body surface is also very hydrophobic (unpublished data). To examine if rebreathed bubbles lengthen dive time, I
applied a commercial emollient to A. aquaticus skin surfaces where bubbles form to block the path of underwater air movement
between the body surface and the nostrils, while leaving the nostrils unobstructed. This prevented normal rebreathed bubbles
from being formed but permitted anoles to otherwise dive and resurface naturally. I compared dive lengths in A. aquaticus with
and without the ability to produce normal bubbles, along with bubble production (if any) and gular pumping rates in each
group, to test whether semi-aquatic anoles use rebreathed bubbles to increase their capacity for long dives. This study is the first
step to determining the functional role of respiratory bubble use in air-breathing vertebrates.

2. Methods
Anolis aquaticus (n = 30; 24 males and 6 females) were collected by hand or lasso from the boulders, banks, and vegetation
bordering the Rio Java at Las Cruces Biological Station, Puntarenas Province, Costa Rica, in 2021 and 2022. Upon capture,
lizards were immediately placed into a cotton drawstring bag and transported a short distance to the location of the field arena
(less than a 5-min walk from the site of collection). The arena was a clear plastic tank (74 × 45 × 34 cm; L × W × H) filled
with fresh stream water to approximately 30 cm, containing several stream rocks and a single flat rock used as an underwater
lizard perch. An action camera (EK7000Pro, Akaso, Frederick, MD, USA) was placed underwater in the arena ca 30 cm from the
designated perch to record each trial. The entire arena was securely placed in the water at the stream edge, and tank water was
replaced immediately before each trial.

Lizards were randomly assigned to either the impaired bubble treatment group or the normal bubble control group. In
the treatment group, a thin layer of commercial emollient (Honest Beauty Daily Moisturizer, Honest Company, Los Angeles,
CA, USA) containing hydrophilic humectants was evenly applied with a soft paintbrush to the upper snout and both lateral
sides of the head (figure 1c), avoiding the nostrils and eyes; similar water-based substances (typically containing prescription
ingredients) are frequently used to treat skin conditions in herpetofauna, e.g. [35]. The control group received an application of
water, instead of the emollient, also applied using a paintbrush. Immediately after applying the emollient or water, the lizard
was submerged into the arena and was allowed to grasp the underwater perch autonomously. Lizards (n = 2) failing to grasp
the perch autonomously when initially submerged were excluded from trials. All researchers retreated behind a blind ca 3 m
from the arena; from the blind, lizard dive length was measured with a stopwatch and the presence/absence of rebreathing was
noted. As soon as the lizard resurfaced, the total dive length (s) was recorded, and the trial was concluded. Body mass (g) and
sex were noted for each lizard. Any residual emollient was removed from lizards in the treatment group using a cotton swab,
and each lizard was released at its site of capture after receiving a temporary marking (a single drop of nail polish on the base of
the tail) to prevent reuse; study locations within the same river shifted ca 0.4 km between years, and A. aquaticus average home
ranges are 21 m2 (M. Delfin & L. Swierk, unpublished data), making it unlikely that lizards were used more than once.

Videos of trials were reviewed to obtain counts of rebreathed bubbles and instances of gular pumping. A bubble was
considered ‘rebreathed’ if it was exhaled while clinging to the lizard’s body surface (typically the dorsal surface of the head)
(figure 1d) and then re-inhaled to the point where it was no longer visible; this full cycle was considered to be a single
rebreathed bubble. A single gular pump included the extension (figure 1e) and full retraction (figure 1f) of the hyobranchium.

(a) Statistical methods
To test if dive length was influenced by rebreathing, a multiple regression model was used with group (control v. treatment),
body mass (g) and year as predictors. The relationships between dive length and the counts of rebreathed bubbles or gular
pumps were tested using two generalized linear models (family = quasipoisson). In these two models, either the count of
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rebreathed bubbles or the count of gular pumps was the response variable, and group, body mass, year and dive length
were predictors; two complementary linear regression analyses similarly modelled the (log+1 transformed) rates of bubble
rebreathing (# bubbles/min) and gular pumping (# pumps/min) with group, body mass and year as predictors. Sex was
initially included in all models, but it did not significantly improve fit and was removed according to standard model selection
procedures [36,37]; no model qualitatively differed after sex was excluded. The emmeans package [38] was used to determine the
estimated marginal means (EMMs) and effect size of treatment in the multiple regression model.

Values of p were obtained for individual predictors using the Anova() function in the car package [39], using F-tests in
the two generalized linear models to account for overdispersion. The residuals of all models were inspected using diagnostic
plots, and model appropriateness was confirmed [40]. Statistical tests maintained an alpha of 0.05, were two-tailed and were
performed in R (v. 3.6.3; R Development Core Team 2020).

3. Results
A total of 28 trials (control = 15, treatment = 13) using A. aquaticus adults (n = 15; 8 control, 7 treatment) and subadults (n = 13;
7 control, 6 treatment) were completed. In the control group, all lizards rebreathed large bubbles (with an area of adherence
slightly smaller than the anterior head and snout surface). Some (n = 6) treatment group lizards infrequently rebreathed ca 1 mm
bubbles that appeared directly over the individual nostrils but did not adhere to the surface of the skin (similar to the ‘partial’ or
‘narial’ bubbles produced by most non-aquatic anole species, see [25]); a Wilcoxon rank sum exact test confirmed no difference
in dive length (W = 16, p = 0.534) or gular pumping rate (W = 24, p = 0.125) between treatment group lizards with and without
‘partial’ bubbles. One control group lizard with an especially high dive time (477 s) was determined to be an outlier (G = 3.259,
U = 0.646, p = 0.005) using the outlier package [41] in R, and this observation was removed from subsequent analyses.

The multiple regression model that tested the factors influencing dive length was significant overall (F3,23 = 3.669, p = 0.027),
with lizards in the control group remaining underwater longer than those in the treatment group (table 1; figure 2a). Effect size
analysis classified treatment as having a ‘large’ effect on dive duration (Cohen’s d = 0.958 ± 0.419 s.e.; [42]), with control lizards
diving on average 67.5 s longer than treatment lizards (figure 2b). The final model also suggested a non-significant trend of mass
increasing with dive time; year was unrelated to dive time (table 1).

Treatment affected a lizard’s number of rebreathed bubbles but not the number of gular pumps (table 2). Control lizards
rebreathed an average of 6.03 ± 0.87 s.e. (normal) bubbles per minute, whereas treatment lizards rebreathed an average of 1.80 ±
0.70 s.e. (partial) bubbles per minute (figure 2c). Rebreathing rates significantly differed by group in both the generalized linear
model (table 2) and also in a complementary linear regression analysis that modelled bubble rebreathing rate as the result of
treatment group (F1,21 = 18.735, p < 0.001), mass (F1,21 = 6.241, p = 0.020) and year (F1,21 = 1.490, p = 0.235). In contrast, lizards in
both groups produced gular pumps at approximately the same rate (3.45 ± 0.66 s.e. v. 3.58 ± 0.85 s.e. gular pumps per minute,
control versus treatment lizards, respectively; figure 2d); this result was found in both the generalized linear model and in a
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(a)

(d) (e)

(f)

(b) (c)

Figure 1. Anolis aquaticus rebreathing air bubbles located (a) dorsally on the snout and (b) laterally between the eye and nostril. (c) Time progression of the formation
of single dorsal bubble, with 0.2 s elapsed between each image i–iv, and 0.07 s elapsed between each image iv–vii. The bubble is held briefly, slightly expanding
(vii–viii; 2.0 s) and is then rebreathed. (d) Area (blue shading) of application with emollient (impaired bubble treatment group) or water (normal bubble control
group). Gular pumping shown at (e) its greatest extension followed by (f) contraction.
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linear regression with gular pump rate against treatment group (F1,21 = 0.001, p = 0.975), mass (F1,21 = 1.953, p = 0.177) and year
(F1,21 = 0.166, p = 0.687). Gular pumps were correlated with dive length in both treatment and control lizards (figure 3a). Overall,
the number of rebreathed bubbles was not related to dive length in our original model (figure 3b), though removing treatment
from the group from the model revealed a significant correlation between rebreathed bubbles and dive time (F1,23 = 7.628, p =
0.011). Greater body mass corresponded to fewer rebreathed bubbles produced, though body mass did not correlate with gular
pump production rate. Full model results are shown in table 2.

4. Discussion
Semi-aquatic anoles are the only group of vertebrates known to rebreathe bubbles of air while underwater (besides when used
for olfaction [1–3]), and the only vertebrates in which rebreathed bubbles have a putative respiratory function. In this study, I
demonstrate that rebreathed bubbles extend dive time in a semi-aquatic anole, A. aquaticus. This finding provides evidence of
the functional respiratory contribution of rebreathing, giving context to the observation [25] that O2 is extracted from rebreathed
bubbles by anoles. Preventing rebreathing shortens anole dive time in trial arenas by an average of ca 32%; this difference may
be even greater in natural streams, when there can be an imminent threat of predation and dives tend to be longer [23,25]. These
results provide strong support for the ‘scuba tank’ hypothesis of anole rebreathing [23], in which the surplus air carried inside
and on the hydrophobic body surface of semi-aquatic anoles works like a human diver’s scuba tank to extend dive time by
providing an additional volume of accessible air. Without rebreathing, much of this additional air is unavailable to anoles, and
dives are shortened.

Application of the treatment not only reduced dive time but also reduced rebreathing rates, such that treatment-group A.
aquaticus in this study had similarly low rebreathing rates to that of non-aquatic anoles (electronic supplementary material, table
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Figure 2. Comparison of normal bubble control (C) and impaired bubble treatment (T) group (a) dive times, (b) EMMs of dive times accounting for variability in mass
and year, and counts of (c) rebreathed bubbles and (d) gular pumps performed per minute in A. aquaticus. Filled blue circles (control group) indicate normal-sized
rebreathing bubbles, filled gold circles (treatment group) indicate partial bubbles and open gold circles (treatment group) represent lizards entirely without bubbles.

Table 1. Multiple regression model results of the factors influencing dive length in diving A. aquaticus, including treatment group (normal bubble control versus
impaired bubble), mass (g) and year. Statistical significance (p < 0.05) is indicated in bold with an asterisk (*).

factor estimate d.f. sum sq F p

treatment −60.63 ± 24.96 1 23 640 5.898 0.023*

mass 11.64 ± 6.47 1 12 954 3.232 0.085

year 6.16 ± 25.70 1 231 0.058 0.812
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S1) and produced only the ‘partial’ or ‘narial’ rebreathed bubbles that are typical of non-aquatic anoles upon submergence. In
effect, by preventing rebreathing, A. aquaticus demonstrated a behavioural (diving) phenotype similar to non-aquatic anoles.
From a phylogenetic perspective, it seems unlikely that rebreathing represents a key innovation, given the probable multiple
independent occurrences of semi-aquatic Anolis species evolution [43,44]. Nevertheless, the adaptive function of rebreathing, as
identified in this study, could drive the apparent convergence in rebreathing among independently evolved semi-aquatic anoles.

Lizards primarily respire using costal aspiration, a primitive form of aspiration in amniotes lacking accessory respiratory
muscles (e.g. a diaphragm), where inspiration and expiration are controlled by costal (axial) muscles (as reviewed by [28]). As
these axial muscles are also implicated in lizard locomotion, there can be axial constraints on lizard respiration during periods
of strenuous or sustained exercise [45,46]. Unlike rebreathing, A. aquaticus gular pumping rates were similar in both treatment
and control groups (figure 2d), and the numbers of gular pumps were correlated with dive length in both groups (figure
3b). Gular pumping is an ancestral trait among lizards [28] that, in some species, may mitigate axial respiratory constraints
by providing a supplementary air source to the lungs during periods of exercise (Varanus lizards [45]), at high temperatures
(Uromastyx aegyptius microlepis [47]) or following a long dive and bradycardia (in marine iguanas, Amblyrhynchus cristatus,
which do not rebreathe [48]).

While semi-aquatic Anolis lizards are unlikely to experience locomotion-related respiratory constraints while inactive and
rebreathing underwater, they do face respiratory constraints as diving and air-breathing animals. When underwater, gular
pumping cannot push new air into a rebreathing anole’s lungs, but gular pumping may nevertheless enhance the circulation
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Figure 3. Numbers of (a) rebreathed bubbles and (b) gular pumps in A. aquaticus in the normal bubble control (blue, solid line) and impaired bubble treatment groups
(gold, dotted line). Shaded coloured regions around each line of best fit are 95% confidence bands. Filled blue circles (control group) indicate normal-sized rebreathing
bubbles, filled gold circles (treatment group) indicate partial bubbles and open gold circles (treatment group) represent lizards without bubbles. Rebreathing, but not
gular pumping, rates differed by treatment group.

Table 2. Generalized linear model (family = quasipoisson) results of the numbers of rebreathed bubbled and the numbers of gular pumps produced by diving A.
aquaticus in normal bubble control and impaired bubble treatment groups. Statistical significance (p < 0.05) is indicated in bold with an asterisk (*).

rebreathed bubbles gular pumps

factor estimate d.f. sum sq F p estimate d.f. sum sq F p

treatment −1.21 ± 0.36 1 64.270 14.044 0.001* 0.17 ± 0.32 1 1.539 0.257 0.617

dive length <0.00 ± 0.00 1 16.013 3.499 0.076 0.01 ± 0.00 1 26.040 4.359 0.049*
mass −0.14 ± 0.06 1 22.160 4.842 0.039* 0.05 ± 0.09 1 1.603 0.268 0.610

year 0.64 ± 0.29 1 23.971 5.238 0.033* 0.32 ± 0.35 1 5.211 0.872 0.361

model R2 = 0.838 R2 = 0.492
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of air from the gular/tracheal/nasal spaces past the glottis and into the lungs. By exchanging stored volumes of air and making
them available for respiratory use, gular pumping may in fact function in much the same way as a rebreathed bubble itself, as
an air redistribution mechanism. Gular pumping has not yet been documented to have any functional role in Anolis respiration,
either in air or underwater, so this remains to be tested. The maintenance of gular pumping in both treatment and control
groups, in addition to other unmeasured variables like bradycardia, may help explain how semi-aquatic anoles may dive, albeit
for shorter durations, even if rebreathing is not possible.

An early report [49] suggests that the gular/buccal cavity itself may serve as a respiratory surface, with up to 10% of total
CO2 waste expelled by gas exchange through capillaries below the epithelium of the pharynx and the oesophagus. Though
more rigorous tests would clarify how widely applicable this phenomenon is, this mechanism could give insight into how
gular pumping may facilitate diving behaviour in semi-aquatic anoles and other air-breathing reptiles. This idea is particularly
intriguing if costal aspiration and gular pumping also work together with the potential air–water gas exchange of bubbles to
expel CO2, possibly indicating a three-tiered gas exchange system in semi-aquatic anoles. Additionally, costal aspiration and
gular pumping together could directly supplement blood oxygenation if O2 is exchanged between bubbles and water (as a
physical gill [21,22]), though physical gill action alone is unlikely to support long-term underwater respiration given the larger
size and greater metabolic demands of vertebrates compared to that of invertebrates, see [22]. Whether bubble air–water gas
exchange in vertebrates provides any functional respiratory contribution is yet to be determined. However, gas exchange can
occur directly from water to blood vessels in reptiles: for example, some turtles use cloacal or other cutaneous respiration (e.g.
[50]), and sea snakes (Hydrophis spp.) potentially use cutaneous respiration to oxygenate blood vessels on the head [51].

Many outstanding questions remain regarding the underlying mechanisms of dive extension via rebreathing. In particular,
does rebreathing act to merely redistribute volumes of air in and around an anole’s body, or are there mechanisms for additional
gas exchange with the water through a physical gill-type action? Furthermore, the environment should variably alter rebreath-
ing effectiveness, as stream water flow and level of dissolved oxygen could affect gas exchange with bubble air and thus dive
duration (A. Martin, D. Cordero, LS, unpublished data). While some material properties of semi-aquatic anole skin that permit
rebreathing have been identified [27], there is substantial potential for bio-inspired innovations relating to hydrophobicity and
for the development of underwater technologies (e.g. [52–54]). Given the repeated evolution of rebreathing within the Anolis
genus, and the repeated evolution of bubble use more broadly among air-breathing animals across taxa, underwater respiration
is an emergent focus in studies of adaptability and evolution to novel habitats.
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